# Palomar Gattini-IR

The dawn of wide-field infrared time domain astronomy

### Kishalay De MIT (NASA Hubble Fellow + Kavli Fellow)

## Outline

- Why IR time domain astronomy?
- The Challenges
- Novel Techniques: Palomar Gattini-IR
- First Results: The Dynamic Infrared Galaxy
- The Next Frontier
  - Multi-messenger astronomy
  - Multi-wavelength view of the obscured universe

## The Era of All-sky Optical Surveys



## Finding things that go boom



# Together, optical time domain surveys today can take pictures of the entire sky every night







ASASSN 20 X 14 cm lens FOV ~ 80 deg<sup>2</sup> Limit g ~ 18 mag

ATLAS 2 X 0.5 m telescope FOV ~ 30 sq. deg. Limit c ~ 19.5 mag ZTF 1 X 1.2 m telescope FOV ~ 47 sq. deg. Limit r ~ 20.5 mag

### Why time domain astronomy in the NIR?



The NIR is sensitive to the temporal phenomena obscured by dust or intrinsically red

#### The Milky Way as viewed by Gaia space mission



#### Most stars in our Galaxy are hidden by dust

## The Challenges

#### Caveat #1: The atmosphere



#### Caveat #2: The atmosphere (again..)



Optical time domain astronomy has exploded thanks to large format cameras



Caveat #3: (Conventional) Infrared cameras are about ten times more expensive (per pixel) than optical How can we take bigger pictures with the same detector? Say I had a camera with 1 million pixels





## Palomar Gattini-IR





De+ 2020a, Moore & Kasliwal 2019



Palomar Gattini-IR (PGIR) field of view is 40 times larger than any other current near-infrared instrument

## Robotic eyes on the infrared sky



Credit: Scott Adams

#### Robotic telescope operations and automated realtime data processing + Transient identification



De+ 2020a, PASP, 132

## Nightly sky coverage



Areal coverage of ~ 7500 square degrees per night to a depth of J ~ 16 AB mag



## The Dynamic Infrared Galaxy

## First results

A NIR census of the dynamic, obscured Galactic plane

- Accreting young star outbursts Hillenbrand, De et al. 2021, arXiv: 2101.04203 Hankins et al. in prep.
- Erupting classical novae De et al. 2021, arXiv: 2101.04045
- Flaring magnetars and fast radio bursts De et al. 2020c, ApJL, 901, arXiv: 2007.02978

## First results

A NIR census of the dynamic, obscured Galactic plane

- Accreting young star outbursts Hillenbrand, De et al. 2021, arXiv: 2101.04203 Hankins et al. in prep.
- Erupting classical novae De et al. 2021, arXiv: 2101.04045
- Flaring magnetars and fast radio bursts De et al. 2020c, ApJL, 901, arXiv: 2007.02978

#### Stars are born in dust



Understanding dust obscured star formation is crucial to understand where we came from



#### 1 Million times fainter in the optical due to dust!

#### "False-color" Infrared Image from the ground



Similar nebula observed with the Hubble Space Telescope

PS1

## First results

A NIR census of the dynamic, obscured Galactic plane

- Accreting young star outbursts Hillenbrand, De et al. 2021, arXiv: 2101.04203 Hankins et al. in prep.
- Erupting classical novae De et al. 2021, arXiv: 2101.04045
- Flaring magnetars and fast radio bursts De et al. 2020c, ApJL, 901, arXiv: 2007.02978

#### The first infrared census of Galactic novae



Complete census of Galactic novae crucial for understanding Galactic chemical evolution (Na, Li) and constraining progenitors of Type Ia supernovae

#### What is the Galactic rate of novae?



Are optical nova samples complete? Rate overestimated from nearby novae? Could most be dust obscured?

#### Search for large amplitude transients in PGIR



De+ 2021, arXiv: 2101.04045

PGIR has doubled the discovery rate of novae in the PGIR observable footprint

#### The Galactic distribution of novae



3-D dust distribution models from Green et al. 2019

### The Galactic distribution of novae

Circles = Complete sample of 180 optically discovered novae with extinction estimates until 2018 (Özdönmez+ 2016, 2018)



3-D dust distribution models from Green et al. 2019

### The Galactic distribution of novae

Circles = Complete sample of 180 optically discovered novae with extinction estimates until 2018 (Özdönmez+ 2016, 2018)



#### Stars = 17 months of PGIR novae

3-D dust distribution models from Green et al. 2019

#### The extinction distribution of Galactic novae



Most obscured novae are likely missed in optical searches

#### Quantitative simulations of PGIR survey



## First results

A NIR census of the dynamic, obscured Galactic plane

- Accreting young star outbursts Hillenbrand, De et al. 2021, arXiv: 2101.04203 Hankins et al. in prep.
- Erupting classical novae De et al. 2021, arXiv: 2101.04045
- Flaring magnetars and fast radio bursts De et al. 2020c, ApJL, 901, arXiv: 2007.02978

## Fast H2RG readout mode



Achieves 99.98% observing efficiency with 0.84 second exposures and enables increased dynamic range

## The first Galactic Fast Radio Burst



## Targeted follow-up of SGR1935+2154

First reported Galactic FRB (CHIME+2020, Bochenek+2020)

### Behind $A_V \approx 7 - 10 \text{ mag}$





# **Simultaneous** NIR constraints on X-ray bursts detected by HXMT + NuSTAR



interpolation between the X-ray and radio bands

## The Next Frontier Multi-messenger astronomy

### GW170817 coincident with GRB170817A

Abbott+ 2017





### Spectroscopic signatures of r-process

Rapid reddening of spectra consistent with line blanketing and high opacity from multitude of f-shell valence electrons in heavy r-process elements **Unlike any other known type of transient** (Kasen+ 2017; Kilpatrick+ 2017)





Time: -1225 days

Pian+ 2017

### Infrared emission is ubiquitous



Kasen+ 2017

### Independent of mass, viewing angle

## Pathfinder to GW counterpart search



Alternative detector technologies (InGaAs) driving the IR TDA revolution





#### WINTER and DREAMS

Upcoming projects with smaller fields of view and larger depths, aiming to search for EM-GW counterparts



## The Next Frontier High energy phenomena in the Milky Way

## The X-ray sky revolution



### MAXI, BAT, GECAM, SVOM, eROSITA ..

IR time domain surveys will provide unprecedented temporal coverage of optically obscured high energy phenomena

Un-targeted searches for second timescale variability

# Extreme accretion phenomena



# Extreme magnetospheric phenomena



### "Supergiant Fast Xray Transients"

## Magnetar Flares

## The next supernova in the Milky Way



Ongoing effort to increase PGIR dynamic range to study stars as bright as ~0th magnitude

- Palomar Gattini-IR is performing the first  $3\pi$  NIR time domain survey from Fall 2019.
- Gattini-IR is probing the reddest, dustiest time domain phenomena — obscured Galactic novae, microlensing events, dusty variables, young stellar objects, flaring magnetars and IR bright supernovae.
- The dynamic and obscured Galactic plane is ripe for exploration combining upcoming wide-field IR + Xray/radio follow-up!

## Thanks for listening!

kde@astro.caltech.edu www.astro.caltech.edu/~kde

#### The first infrared census of dust forming R Coronae Borealis (RCB) stars





Karambelkar+ 2021 arXiv: 2012.11629

149 RCB candidates selected on PGIR variability, 11 confirmed with pilot spectroscopy New measurements of O<sup>16</sup>/O<sup>18</sup> ratios consistent with white dwarf merger scenarios

### Other upcoming results



#### A population of reddened microlensing events in the Galactic plane

Mroz+ in prep



Infrared-bright supernovae in nearby galaxies

Srinivasaragavan+ in prep