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Cosmic Strings
some new results



Plan
3 projects

• Quantum formation of topological defects.

• Evolution of global string loops.

• Evolution of gauge string loops. 



Examples of topological defects
Nematic liquid crystals and superconductors

Superconductor
Vortex
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Emergence of classical structures from the quantum vacuum
A full quantum calculation (kinks first)
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A quantum mechanics problem
A toy

i=1 i=N
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but now in quantum field theory:
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Formation
the relevant physics

K is a time dependent NxN matrix.

Solve the functional Schrodinger equation

(for the ground state):
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Z̈ + ⌦2(t)Z = 0

Z is a time dependent, complex NxN matrix.

i=1 i=N
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periodic boundaries
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Formation
counting kinks i=1 i=N
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skipping quite a bit of

math….

with specified initial conditions.
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Formation
results

Compare: Kibble-Zurek

Independent of #!
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restricting the summations in (30) to modes that aren’t
oscillating2. So the number density of kinks, nK , is
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where, as seen in (9), the time-dependent cut-o↵ mode
for t > 0 is defined by

sin

Å
⇡nc(t)

N

ã
=

a

2

»
|m2(t)| , (32)

and c�n ⌘ cN�n for 0  n  N � 1.

IV. NUMERICAL RESULTS

We can now numerically solve (9) and use (31) to ob-
tain the number density of kinks as a function of time.
The only scale in the problem is the mass so we work in
units of 1/m by setting m = 1. We also choose L = 6400
and N = 12800, which are both large enough to accu-
rately describe the continuum, infinite space limit of the
discretized model. Notice that, thanks to the physical
cuto↵ we placed on the mode sums, there are no UV di-
vergences.
In Fig. 2 we show our results for several di↵erent values

�t-1/2
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FIG. 2. Log-log plot of hnKi versus time for ⌧ =0.1 (Purple),
0.5 (Red), 1.0 (Green), 5.0 (Orange), 10.0 (Blue). The black
dashed line shows the exhibited power law at late times, i.e.
t�1/2.

of the quench parameter ⌧ . The remarkable feature of
this plot is that all the curves have the same late time
behavior which we can determine to be a t�1/2 power
law. In fact, we can take di↵erences for di↵erent values
of ⌧ , �nK(t, ⌧1, ⌧2) ⌘ nK(t, ⌧1) � nK(t, ⌧2) (see Fig. 3),

2
This is similar to the situation in inflationary cosmology where

only non-oscillating super-horizon modes lead to density pertur-

bations.

FIG. 3. Di↵erences between the average kink density for dif-
ferent values of ⌧ , nK(t, ⌧1)�nK(t, ⌧2) vs. time, for ⌧1 = 0.1;
⌧2 = 0.5 (Blue), 1.0 (Red), 5.0 (Purple), 10.0 (Green). The
black dashed line shows the exhibited power law, i.e. t�3/2.

and these follow a t�3/2 power law. Thus at late times
we can write

nK(t) = C

…
m

t
+ O

Ä
t�3/2

ä
, (33)

where we get C ⇡ 0.22 from our numerical solution. Note
that C is independent of ⌧ . At early times (i.e. imme-
diately after the phase transition), nK increases from 0
to a maximum value (nK)max within a time tmax, before
decreasing again. This is to be expected: the phase tran-
sition triggers the creation of kinks with randomly dis-
tributed positions and velocities, which later start annihi-
lating with each other. In Figs. 4 and 5 we plot (nK)max

and tmax respectively, as a function of the quench param-
eter ⌧ . This confirms the intuitive expectation according
to which the faster the phase transition (smaller ⌧), the
more kinks are produced and the quicker they start an-
nihilating.

FIG. 4. Log-Log plot of the maximum average kink density
(nK)max vs. ⌧ . For larger values of ⌧ the power law mani-
fested is ⇠ ⌧�0.33.

for different #’s 
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Applicability
non-zero !

Perturbation parameter:
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FIG. 15. Sketch of f�,⌧ (t) to show its generic features.

We can thus deduce three necessary MM: and su�-

cient conditions for the kink number density in the � = 0
model to be a good approximation to that in the � 6= 0
case:

(i) The duration of early time violation of (146) needs
to be finite i.e. t2 < 1.

(ii) All the kinks need to have been produced by the
time the late time violation of (146) sets in i.e.
tmax < t3

(iii) The duration of the early time violation of
(146) needs to be much smaller than the fastest
timescales of variation of the wave-functional i.e.
�t ⌘ t2 � t1 ⌧ 1/m.

We have swept the (�, ⌧) parameter space to determine
the regions where the above conditions are verified. This
has been done numerically by approximating f�,⌧ via

f�,⌧ (t) ⇡ 2|m2|� 3�
NX

n=1

�
|cn(t)|

2
� |cn(t0)|

2
�
, (148)

and determining the corresponding values of t1, t2, t3 for
a wide range of values of � and ⌧ . The results are shown
in Fig. 16 where we used the same numerical parameters
as in Sec. IID. The regions shaded in red, orange and
pink are excluded by the necessary conditions (i), (ii)
and (iii) respectively. Alternatively we expect the � = 0
model to be accurate inside the green region. Remark-
ably, the �⌧/m = 1 curve lies deep inside this region
which indicates that �⌧/m ⌧ 1 is a su�cient condition
for the approximation to be valid.

VI. CONCLUSIONS

In this work we carried out a thorough analysis of the
dynamics of topological defect formation in a quantum

FIG. 16. Plot showing the allowed and disallowed regions of
the (�, ⌧) parameter space in units where m = 1.

field theory where the only interactions are with external
parameters that induce a quantum phase transition. We
thus worked in the limit where self-interactions can be ne-
glected. Results for the number density of kinks in one
spatial dimension are summarized in Fig. 2, for vortices
in two spatial dimensions in Fig. 9, and for monopoles in
three spatial dimensions in Fig. 13. These results indi-
cate that the number density of topological defects in d
spatial dimensions scales as t�d/2 and does not depend on
the quench time scale, in the late time limit. Moreover,
we showed that the sudden phase transition analytical
result is a universal attractor. These novel results stand
in contrast to the Kibble-Zurek prediction for a thermal
phase transition.

We have also discussed the limit within which our re-
sults can be expected to be a good approximation for a
more realistic theory where self-interactions are not ex-
plicitly set to zero. In the case of kinks (d = 1) we found
the condition �⌧/m ⌧ 1 where � is the self-interaction
coupling strength, to be a su�cient condition for our re-
sults to hold. This condition can be generalized on di-
mensional grounds to be �md�2⌧ ⌧ 1 in d spatial dimen-
sions.
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m2(t) = �m2 tanh

✓
t

⌧

◆

12

With these conventions in mind (where matrices are four
index objects and vectors are two index objects), we
can directly generalize the computations in Sec. II A to
solve the functional Schrodinger equation for the wave-
functional is  [�ij , ij ; t]. In fact, we can define a new
N2

⇥ N2 matrix Z obeying Eqs. (20), (21) and (22) as
long as the matrix elements of ⌦2 are given by

[⌦2]ij,kl =

8
><

>:

+2/a2 +m2(t) , i = k, j = l

�1/a2 , i = k ± 1, j = l ± 1 (mod N)

0 , otherwise .
(110)

It is then easy to write the probability density functional
as in Eq. (28),

| (t)|2 =
1

det(2⇡K)
e��

TK�1�/2e� 
TK�1 /2 . (111)

where the matrix K is still related to Z via K = ZZ†.
We can be even more explicit by realizing that the ma-

trix Z(t) is once again real and circulant, i.e., the matrix
elements of Z, Zpq,rs depend only on p� r (mod N) and
q � s (mod N). We can therefore again diagonalize Z
using the discrete Fourier transform:

Zpq,rs =
1

N

NX

n,n0=1

cn,n0(t)e�i(p�r)2⇡n/Ne�i(q�s)2⇡n0/N . (112)

Using equations (20),(21) and (22), the complex mode functions cn,n0(t) verify

c̈n,n0 +

ï
4

a2

ß
sin2

⇣⇡n
N

⌘
+ sin2

Å
⇡n0

N

ã™
+m2(t)

ò
cn,n0 = 0 , (113)

and

cn,n0(t0) =
�i
p
2a

1

N

ï
4

a2

ß
sin2

⇣⇡n
N

⌘
+ sin2

Å
⇡n0

N

ã™
+m2(t0)

ò�1/4

, (114)

ċn,n0(t0) =
1

p
2a

1

N

ï
4

a2

ß
sin2

⇣⇡n
N

⌘
+ sin2

Å
⇡n0

N

ã™
+m2(t0)

ò1/4
. (115)

Note that cn,n0 = cn0,n which immediately implies that
Zpq,rs = Zqp,sr and again we assume the initial time t0 to
be such that t0 ⌧ �⌧ . This follows from the rotational
symmetry of the system.

A. Average vortex number density

To find the vortex number density, we first need a
quantum operator that counts the number of zeros nZ of
the complex field � (as in Sec. II B), or in other words, co-
incident zeroes of both the fields � and  . Since space is
discretized, such an operator necessarily yields a coarse-
grained estimate of the actual number of zeros of a given
field configuration. As the number of lattice points N2

increases so does the operator’s resolution: while certain
“zeros” cease to be counted, new ones are revealed. In
the limit where N ! 1 we expect divergences, just as in
the kink case, and we will return to this point later on.

We think of the vortex as the intersection of a domain
wall of � – for our purposes, a domain wall is a curve on
which � = 0 – with a domain wall of  . Then, as shown in
Fig. 8, there could be a situation where a � domain wall

FIG. 8. A plaquette showing how zeros are counted.

enters a plaquette through one edge and leaves through
the opposite edge, while a  domain wall passes through
the plaquette in the orthogonal direction. Then the two
domain walls must intersect, leading to coincident zeros
that correspond to a vortex within that plaquette. Other
possibilities include the case where the � wall enters the
plaquette from the lower edge but leaves from the right
edge in Fig. 8 while the  domain wall goes through as
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m2(t)|�|2 �

�

4
|�|4
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Now, taking first the continuum limit N ! 1 while keeping L fixed we obtain, for n2 + n02
 (mL/2⇡)2 ,

c~kn,n0
(t) ⇡

�i
p
2L

Ä
k(n)x

2 + k(n
0)

y
2 +m2

ä�1/4
cosh

Å
t
»

m2 � k(n)x
2 � k(n

0)
y

2

ã

+
1

p
2L

Ä
k(n)x

2 + k(n
0)

y
2 +m2

ä1/4 sinh
⇣
t
»

m2 � k(n)x
2 � k(n

0)
y

2
⌘

»
m2 � k(n)x

2 � k(n
0)

y
2

, (139)

where we have relabelled the mode functions by ~kn,n0 = (k(n)x , k(n
0)

y ) and recall that k(n)x = 2⇡n/L, k(n
0)

y = 2⇡n0/L.

In the limit L ! 1, the discrete variables ~kn,n0 become continuous and, as in Eq. (133), we can write an analytical
formula for the average number density of vortices:

nV ⇡
1

⇡2

8
<

:

Z
m

0

dk

2

4k3
Ä
m2 cosh

Ä
2t
p
m2 � k2

ä
� k2

ä

(m2 � k2)
p
k2 +m2

3

5

9
=

;

8
<

:

Z
m

0

dk

2

4k
Ä
m2 cosh

Ä
2t
p
m2 � k2

ä
� k2

ä

(m2 � k2)
p
k2 +m2

3

5

9
=

;

�1

.

(140)

Using this equation, we can once again estimate the late
time behavior of the average number of vortices. In the
limit, k, k0 ⌧ m, we have

nV ⇡
1

⇡2

Rm
0 dk k3 exp

�
�tk2/m

�
Rm
0 dk k exp (�tk2/m)

⇡
m

⇡2t
= 2!n2

K .

(141)
As mentioned below Eq. (127), the vortex number den-
sity is obtained by squaring the kink number density and
multiplying by the combinatorial factor 2! due to the ex-
change symmetry �$  .

Furthermore, like in the case of kinks, the maxi-
mum number density of vortices can be estimated using
Eq. (140). This maximum is reached immediately after
the phase transition, at time t = 0+ and is found to be

(nV )max =
1

⇡2

Rm
0 dk k3/

p
k2 +m2

Rm
0 dk k/

p
k2 +m2

=
m2

p
2

3⇡2
⇡ 0.0478m2 . (142)

C. Numerical results

We use numerical techniques to solve (113) and then
calculate the average vortex number density using (125).
For reasons discussed earlier, the parameters L and N
that we choose for our numerical simulations need to be
su�ciently large to accurately describe the continuum
infinite volume limit. We choose, L = 2000 and N =
4000. As in the case of kinks, the results are insensitive to
the UV and IR cuto↵s. In practice, because of the order
N2 computational complexity of the problem and the
exponential growth of the magnitudes of mode functions,
we directly solve for ⇢n,n0 = |cn,n0 | and factor out the zero
mode to improve the numerical accuracy (see Sec. IID for
details).

In Fig. 9 we show the average vortex number density
for di↵erent quench parameters ⌧ as a function of time.

�t-1

0 10 50 100 250 550 1050 t
1.×10-4

5.×10-4
0.001

0.005

0.010

0.050

nV

FIG. 9. Log-log plot of nV (t) versus time for ⌧ =0.1 (Purple,
topmost curve), 0.5 (Red), 1.0 (Green), 5.0 (Orange), 10.0
(Blue). The black dashed line shows the exhibited power law
at late times, i.e. t�1.

As in the kink case, the plots of nV vs. t for di↵erent
⌧ converge to the same function and decay as t�1 as we
expect from the analytical estimate in (141). The result
also agrees with the intuition that a vortex corresponds
to the intersection of two independent domain walls.

Fig. 9 also shows that immediately after the phase
transition, nV increases from zero to some maximum
value (nV )max in a time tmax. As time goes on nV starts
to decay. At very early times, after the phase transition,
randomly distributed vortices of positive and negative
winding number are produced, but then the system starts
relaxing, the vortices-antivortices start annihilating, and
the dynamics reaches its scaling regime.

We can also plot the di↵erences of vortex number den-
sities for di↵erent values of ⌧ as we did in the case of
kinks: �nV (t, ⌧1, ⌧2) ⌘ nV (t, ⌧1) � nV (t, ⌧2). This is
shown in Fig. 10 which shows that �nV (t, ⌧1, ⌧2) decays
as t�2 at late times. We thus deduce the asymptotic

for different #’s 
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Global strings (3 dimensions)

String core

Goldstone cloud

(extends to infinity)
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L =
1

2
|@µ�|2 +

1

2
m2|�|2 � �

4
|�|4

Relevant to axion models before the QCD phase 
transition, where ! is the Peccei-Quinn field. The 
phase of ! is the axion field. 
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� = ⌘f(r)ei'Straight string:
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f(r) ⇠ “ tanh(r/w)”

Energy density falls of as 1/r because of 

Goldstone cloud. Similar to electric line charge.
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Kalb-Ramond dynamics

Kalb-Ramond action in terms of 2-form field:
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xHµ⌫�H

µ⌫�

Caveats: No massive radiation. Small backreaction.

Results: Goldstone boson radiation at primary frequency 

with k ~ 1/L. Loop decays after ~10 oscillations.


Tight constraints on QCD axion mass.

A. Vilenkin & TV, 1987; R.L. Davis, 1986; R.L. Davis & E.P.S. Shellard, 1989; …

Nambu-Goto Goldstone cloud

Loop



Evolution
Field theory dynamics

C. Hagmann & P. Sikivie, 1991; T. Hiramatsu et al, 2011;  
M. Gorghetto, E Hardy & G. Villadoro, 2018; V.B. Klaer & G. Moore, 2019

Caveats: Initial conditions? Limited by simulation size.

Results: Goldstone boson radiation with 1/k power spectrum.

Loops decay within ~1 oscillation.


More relaxed constraints on QCD axion mass.
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a, b = 1, 2



Evolution
Field theory simulations

A. Saurabh, TV, & L. Pogosian, 2020

What’s a good way to set up the initial conditions?

Use straight string solution and mimic cosmological production of loops.2

tions of motion are

@2
t �a = r

2�a � �(�b�b � ⌘2)�a (2)

where a = 1, 2, � is a coupling constants. By suitable
rescalings of the fields and the coordinates, we can set
� = 1/2 and ⌘ = 1 and then the (classical) model has no
free parameters.

The solution for a straight global string along the
z�axis is

� = ⌘f(r)ei', (3)

where r =
p

x2 + y2, ' = tan�1(y/x), and f(r) is a
string profile functions that vanishes at the origin and
asymptotes to 1 as

f(r) ! 1 � O

Å
1

r2

ã
. (4)

The energy density in the scalar field is given by

E =
1

2
|@t�|

2 +
1

2
|r�|

2 +
�

4
(|�|

2
� ⌘2)2 (5)

which, if we write � ⌘ ⇢ exp(i↵), can also be expressed
as

E ⌘ E⇢ + E↵, (6)

where the energy density in massive modes (⇢) is defined
as

E⇢ =
1

2
(@t⇢)2 +

1

2
(r⇢)2 +

�

4
(⇢2

� ⌘2)2, (7)

and that in Goldstone modes (↵) as

E↵ =
⇢2

2

⇥
(@t↵)2 + (r↵)2

⇤
. (8)

The string energy per unit length (also its tension) is
found by integrating the energy density of the solution in
(3) in the z = 0 plane. The integration of E⇢ is finite but
the integral of E↵ diverges logarithmically with distance.
With a long range cuto↵ at r = ⇤ the energy per unit
length is

µ ⇡ ⇡⌘2 ln(⇤⌘). (9)

We now create a loop for our simulations following the
scheme in [16] and as illustrated in Figure 1. Our initial
conditions consist of four straight strings boosted with
velocities ±v1 and ±v2 as shown schematically in Fig-
ure 1. The four string solutions are patched together
using the “product ansatz”. If �a (a = 1, . . . , 4) denotes
the solution for the individual strings, the field is taken
to be

�(t = 0,x) =
1

⌘3

4Y

a=1

�a, (10)

+v1

-v1

+v2-v2

FIG. 1: Four straight strings are set up with velocities as

shown. The strings intersect and reconnect to produce a cen-

tral “inner” loop and also a second “outer” loop because of

periodic boundary conditions. These loops then oscillate and

decay. By choosing the spacing of the initial straight strings,

we can produce loops of di↵erent sizes, though they all have

the same initial shape.

and the time derivatives at the initial time are

�̇(t = 0,x) = �(t = 0,x)
4X

b=1

�̇b

�b
, (11)

with �̇b obtained from the boosted solution for a single
string.

While this scheme can be used to construct a loop in
an infinite spatial volume, our simulations are on a finite
lattice and employ periodic boundary conditions. These
numerical limitations necessitate some modifications of
the initial conditions that are described in Appendix A.

II. SIMULATION AND RESULTS

Once the four strings collide, they reconnect to form
two loops – two because of periodic boundary conditions.
If the string velocities are small and not oriented suitably,
the resulting loops will have insu�cient angular momen-
tum and will collapse quickly. We choose velocity mag-
nitudes that are mildly relativistic, |v1| = 0.6 = |v2|, as
expected in a cosmological setting. The directions are
taken to be (v̂1)x = 0.4, (v̂1)y =

p
1 � 0.42 ⇡ 0.92 for

the two strings oriented along the z-axis and (v̂2)z = 0.4,
(v̂2)y ⇡ 0.92 for the strings along the x-axis.

Next we use the explicit Crank-Nicholson algorithm
with two iterations for the numerical evolution [17] with
periodic boundary conditions, keeping track of the energy
densities in the core of the string and the Goldstone mode
(see Eqs. (7) and (8)) and the total energy and angular
momentum. The core of the string is defined as the region
where |�|/⌘ < 0.9. We take the initial string separation
in Figure 1 to be half the size of our lattice for all our

Technical note: Requires Lorentz boosting the static 

straight string solutions, patching together the four 

string solutions, and enforcing periodic boundary 

conditions. The latter requires modifications to the 

“product ansatz” for patching strings.

Parallel on XSEDE
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FIG. 2: The loop energy as a function of time for the outer

loop for di↵erent values of loop sizes L = 50, 100, 150, 200, 250
(lowest to highest curve). A similar plot is obtained for the

inner loops.
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FIG. 3: The loop angular momentum as a function of time

for the outer loop for di↵erent values of loop sizes L =

50, 100, 150, 200, 250 (lowest to highest curve).

runs. The simulation then produces two loops due to
the periodic boundary conditions but both loops are the
same size.

We have run our simulations for a few di↵erent values
of the lattice spacing, �x, and found that the results are
sensitive to the resolution. For example, the total energy
in the simulation box over the entire run is conserved
only at ⇠ 20% level when �x = 0.50 for longer runs
(required for large lattices). We have set ⌘ = 1, e = 1,
� = 1/2 and so the string width is ⇠ 1. Therefore with
�x = 0.5 we only have a few lattice points within the
width of the string. The run with �x = 0.25 gives better
conservation, to ⇠ 5% level over the entire run and agrees
quite well with the much more computationally expensive
run with �x = 0.125.

In Figure 2 we plot the loop energy vs time for several

loop sizes with �x = 0.25. We take the string core to be
the lattice cells where |�| < 0.9⌘, with the sum of energies
in all such cells giving the energy of the loop. Unlike in
the case of gauge strings [16], the decay of global string
loops is not episodic and the energy gradually dissipates.

As the loops evolve, they also shed their angular mo-
mentum, defined as

Li ⌘ �
1

2
✏ijk

Z

string core
d3x xj (@t�@k�⇤ + @t�

⇤@k�) . (12)

where xj is measured from the center of energy of the
loop. In Figure 3 we plot |L| versus time and also see
gradual decay.

III. MASSIVE VERSUS MASSLESS RADIATION

The global string loop emits massive and massless
Goldstone radiation. The massive radiation corresponds
to excitations of the field ⇢ and its energy density is given
in (7); the massless radiation corresponds to excitations
of ↵ with energy density given in (8). Note that ⇢ and ↵
interact, which is evident in (8). However, at late times,
we can write ⇢ = ⌘ + �, ✓ = ↵, where � is a small ex-
citation above the true vacuum and expand the energy
density functions to lowest order in �,

E⇢ =
1

2

⇥
(@t�)2 + (r�)2 + m2

��2
⇤
+ . . . ⌘ E� + . . . , (13)

E↵ =
⌘2

2

⇥
(@t↵)2 + (r↵)2

⇤
+ . . . ⌘ E✓ + . . . , (14)

where m� =
p

2�⌘. By integrating these expressions we
obtain the total energy in the two components,

Ea =

Z
d3xEa, (15)

where a = ⇢, ↵. At early times, E⇢ and E↵ will di↵er
from E� and E✓, respectively, but they will coincide at
late times, when ⇢ ⇡ ⌘.

In Fig. 4 we plot the total energy in each of the com-
ponents ⇢, �, ↵, and ✓ versus time in the run with lattice
size 16003. We see that the Goldstone mode has sig-
nificantly more initial energy compared to the massive
mode and the ratio of the energies in ⇢ and ✓ remains
approximately constant throughout the evolution. The
energies in � and ✓ agree with those in ⇢ and ↵ once the
loop has decayed as is expected. This pattern is repeated
in all our simulations with di↵erent loop sizes, however,
the ratio E✓/E� increases with loop size. as seen in Fig-
ure. 5. This shows that massive radiation become less
important for larger loops. To obtain the length depen-
dence of the ratio, we need to find a fit to the plot in
Figure 5. Unfortunately we could not find an unam-
biguous fit to the data – a linear dependence, power law
dependence and logarithmic dependence, all seem to fit
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runs. The simulation then produces two loops due to
the periodic boundary conditions but both loops are the
same size.

We have run our simulations for a few di↵erent values
of the lattice spacing, �x, and found that the results are
sensitive to the resolution. For example, the total energy
in the simulation box over the entire run is conserved
only at ⇠ 20% level when �x = 0.50 for longer runs
(required for large lattices). We have set ⌘ = 1, e = 1,
� = 1/2 and so the string width is ⇠ 1. Therefore with
�x = 0.5 we only have a few lattice points within the
width of the string. The run with �x = 0.25 gives better
conservation, to ⇠ 5% level over the entire run and agrees
quite well with the much more computationally expensive
run with �x = 0.125.

In Figure 2 we plot the loop energy vs time for several

loop sizes with �x = 0.25. We take the string core to be
the lattice cells where |�| < 0.9⌘, with the sum of energies
in all such cells giving the energy of the loop. Unlike in
the case of gauge strings [16], the decay of global string
loops is not episodic and the energy gradually dissipates.

As the loops evolve, they also shed their angular mo-
mentum, defined as

Li ⌘ �
1

2
✏ijk

Z

string core
d3x xj (@t�@k�⇤ + @t�

⇤@k�) . (12)

where xj is measured from the center of energy of the
loop. In Figure 3 we plot |L| versus time and also see
gradual decay.

III. MASSIVE VERSUS MASSLESS RADIATION

The global string loop emits massive and massless
Goldstone radiation. The massive radiation corresponds
to excitations of the field ⇢ and its energy density is given
in (7); the massless radiation corresponds to excitations
of ↵ with energy density given in (8). Note that ⇢ and ↵
interact, which is evident in (8). However, at late times,
we can write ⇢ = ⌘ + �, ✓ = ↵, where � is a small ex-
citation above the true vacuum and expand the energy
density functions to lowest order in �,

E⇢ =
1

2

⇥
(@t�)2 + (r�)2 + m2

��2
⇤
+ . . . ⌘ E� + . . . , (13)

E↵ =
⌘2

2

⇥
(@t↵)2 + (r↵)2

⇤
+ . . . ⌘ E✓ + . . . , (14)

where m� =
p

2�⌘. By integrating these expressions we
obtain the total energy in the two components,

Ea =

Z
d3xEa, (15)

where a = ⇢, ↵. At early times, E⇢ and E↵ will di↵er
from E� and E✓, respectively, but they will coincide at
late times, when ⇢ ⇡ ⌘.

In Fig. 4 we plot the total energy in each of the com-
ponents ⇢, �, ↵, and ✓ versus time in the run with lattice
size 16003. We see that the Goldstone mode has sig-
nificantly more initial energy compared to the massive
mode and the ratio of the energies in ⇢ and ✓ remains
approximately constant throughout the evolution. The
energies in � and ✓ agree with those in ⇢ and ↵ once the
loop has decayed as is expected. This pattern is repeated
in all our simulations with di↵erent loop sizes, however,
the ratio E✓/E� increases with loop size. as seen in Fig-
ure. 5. This shows that massive radiation become less
important for larger loops. To obtain the length depen-
dence of the ratio, we need to find a fit to the plot in
Figure 5. Unfortunately we could not find an unam-
biguous fit to the data – a linear dependence, power law
dependence and logarithmic dependence, all seem to fit
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FIG. 4: Energy in massive and massless components and total

energy (TE) for L = 200. Lower curves are for massive radi-

ation calculated as ⇢ (green) and � (red). Middle curve is for

Goldstone radiation calculated for ✓ (blue) and ↵ (orange).

Top curve (black) is the total energy.
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FIG. 5: Plot for the ratio of energy in the Goldstone mode to

energy in the massive mode at the decay time as a function

of loop size.
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FIG. 6: Log-linear plot for the ratio of initial energy in the

Goldstone mode to initial energy in the massive mode as a

function of loop size.
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FIG. 7: The loop decay time as a function of the loop size.

The best fit line is ⌧ = 1.39L+ 4.75.

the data equally well. Yet, based on Figure 4 there is an
alternate way to estimate the length dependence of the
ratio. This method uses the observation that the energies
in � and ✓ are approximately conserved during the col-
lapse time. (Eventually � particles will decay into Gold-
stone bosons.) So to obtain the ratio we simply need to
estimate these energies at the initial time, which we can
do using the initial conditions described in Sec. I. Since
no evolution is necessary to get the initial energies, we
can go to much larger lattices. The initial ratios versus L
are shown in Figure 6 on a log-linear plot, showing that
the ratio grows as ln(m�L). The logarithm can also be
understood by noting that the energy of the Goldstone
cloud around a single global string diverges logarithmi-
cally with distance from the string (see (9)). For a loop,
the loop size provides a cuto↵ on the divergence but it
means that the Goldstone cloud has energy proportional
to ln(m�L). In our simulations, we have modified the
string ansatz slightly to account for the periodic bound-
ary conditions as described in Appendix A, so we have
calculated the energy numerically as shown in Figure 6.

We use Figure 4 to define the loop lifetime ⌧ : the ✓
and ↵ curves coincide once the strings have decayed and
⇢ ⇡ ⌘ is a good approximation. The loop lifetime ⌧ versus
loop length is shown in Figure 7 and is well-described by
a linear relation ⌧ ⇡ 1.4L.

In Figure 8 we show a snapshot of the potential energy
density at an intermediate time in the evolution. Un-
like the gauge string, the global string is “flu↵y”, which
may be understood as due to the soft power law pro-
file function in (4) as opposed to the hard exponential
profile functions in the gauge case. Deformations of the
core correspond to excitations of the massive degree of
freedom. In the animations we see that the kinks get
rounded out but they also produce bulges in the string
core as seen in Figure 8. The transfer of energy from
kink collisions to core oscillations is an intermediate step
in the process of the eventual decay of the entire loop
energy into Goldstone modes that is not accounted for
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Energies in individual components 
are quite well conserved up to loop 
decay time: cloud radiates into 
massless modes, core radiates into 
massive modes that only later  
convert into massless modes. 

4

0 50 100 150 200 250 300 350
0

1

2

3

4

5

·104

time

E
n
er

gy

FIG. 4: Energy in massive and massless components and total

energy (TE) for L = 200. Lower curves are for massive radi-

ation calculated as ⇢ (green) and � (red). Middle curve is for

Goldstone radiation calculated for ✓ (blue) and ↵ (orange).

Top curve (black) is the total energy.
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FIG. 7: The loop decay time as a function of the loop size.

The best fit line is ⌧ = 1.39L+ 4.75.

the data equally well. Yet, based on Figure 4 there is an
alternate way to estimate the length dependence of the
ratio. This method uses the observation that the energies
in � and ✓ are approximately conserved during the col-
lapse time. (Eventually � particles will decay into Gold-
stone bosons.) So to obtain the ratio we simply need to
estimate these energies at the initial time, which we can
do using the initial conditions described in Sec. I. Since
no evolution is necessary to get the initial energies, we
can go to much larger lattices. The initial ratios versus L
are shown in Figure 6 on a log-linear plot, showing that
the ratio grows as ln(m�L). The logarithm can also be
understood by noting that the energy of the Goldstone
cloud around a single global string diverges logarithmi-
cally with distance from the string (see (9)). For a loop,
the loop size provides a cuto↵ on the divergence but it
means that the Goldstone cloud has energy proportional
to ln(m�L). In our simulations, we have modified the
string ansatz slightly to account for the periodic bound-
ary conditions as described in Appendix A, so we have
calculated the energy numerically as shown in Figure 6.

We use Figure 4 to define the loop lifetime ⌧ : the ✓
and ↵ curves coincide once the strings have decayed and
⇢ ⇡ ⌘ is a good approximation. The loop lifetime ⌧ versus
loop length is shown in Figure 7 and is well-described by
a linear relation ⌧ ⇡ 1.4L.

In Figure 8 we show a snapshot of the potential energy
density at an intermediate time in the evolution. Un-
like the gauge string, the global string is “flu↵y”, which
may be understood as due to the soft power law pro-
file function in (4) as opposed to the hard exponential
profile functions in the gauge case. Deformations of the
core correspond to excitations of the massive degree of
freedom. In the animations we see that the kinks get
rounded out but they also produce bulges in the string
core as seen in Figure 8. The transfer of energy from
kink collisions to core oscillations is an intermediate step
in the process of the eventual decay of the entire loop
energy into Goldstone modes that is not accounted for

Goldstone energy (2 definitions)

Massive mode energy (2 definitions)

Total energy

Loop decay time
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Can we see the creation of massive modes?

5

FIG. 8: A snapshot of the potential energy density for a loop

with L = 50 at an intermediate time showing a “flu↵y” de-

formable core and massive radiation. The full animation can

be seen at [18].

by the Kalb-Ramond approximation. It remains to be
determined if the core oscillations play a significant role
for cosmological size loops.

The bulges in Figure 8 suggest the existence of a bound
state on a global string and we can confirm this explic-
itly. Consider a perturbation of a straight global string
oriented along the z axis,

�(t, r, ✓, z) = (f(r) + e�i!tg(r))ei✓ (16)

where we have set ⌘ = 1 for convenience. (To obtain
bound states that propagate along the string, we would
replace !t by !t � kz.) The string profile function satis-
fies,

� f 00
�

f 0

r
+

ï
1

r2
+

1

2
(f2

� 1)

ò
f = 0 (17)

with f(0) = 0 and f(1) = 1. Upon linearization, the
perturbation g(r) satisfies the Schrodinger-type equa-
tion,

� g00
�

g0

r
+

ï
1

r2
+

3

2
(f2

� 1)

ò
g = ⌦g (18)

where ⌦ ⌘ !2
� 1 and g(0) = 0 = g(1). A non-trivial

bound state solution, i.e. with ⌦ < 0, of this equation
corresponds to a bound state deformation of the global
string profile. That a bound state should exist can be
seen by comparing Eqs. 17 and 18. The potential term
in square brackets in the Schrodinger equation (18) is
deeper than the corresponding term appearing in (17) by
the extra term 2(f2

�1)/2 < 0. We know that f(1) = 1,
so the extra term in the potential in (18) will have the

e↵ect of decreasing g as compared to f and can make it
vanish asymptotically for the correct eigenvalue ⌦. We
have confirmed this by solving (17) and (18) and deter-
mine the lowest energy eigenvalue to be ⌦ ⇡ �0.19, thus
explicitly showing the existence of massive bound states
on the global string.

IV. ENERGY SPECTRUM

We begin by decomposing the fields � and ✓ = ↵ into
Fourier modes,

� =

Z
d3k

(2⇡)3
⇥
�k(t)e�ik·x + �⇤

k(t)e+ik·x⇤ (19)

✓ =

Z
d3k

(2⇡)3
⇥
✓k(t)e�ik·x + ✓⇤

k(t)e+ik·x⇤ (20)

The energy densities in a Fourier mode labeled by k
are given by,

E�k =
1

2

⇥
|@t�k|

2 + (k2 + m2
�)|�k|

2
⇤

(21)

E✓k =
⌘2

2
[(@t✓k)2 + k2

|✓k|
2]. (22)

In general, the spectra will depend on all three compo-
nents of the wavevector k. However, if we sum over a
large number of loops, with di↵erent shapes, sizes and
orientations, we can expect an isotropic spectrum. To
extract an isotropic spectrum from our simulation we
bin the spectral components according to their k = |k|

value and sum over all modes with |k| in the interval
R(k) = (k � �k, k), where �k = 2⇡/(2L) (2L is the
lattice size in our simulations):

E�k =
(�k)3

(2⇡)3

X

|k|2R(k)

E�k, E✓k =
(�k)3

(2⇡)3

X

|k|2R(k)

E✓k.

(23)
Note that the sum is over vectors k with the same magni-
tude. Hence, it includes the 4⇡k2 factor that arises from
the phase space volume factor and to obtain the total
energy one only needs to sum over all the modes,

E� =
X

k

E�k, E✓ =
X

k

E✓k. (24)

We plot E�k versus k on a log-log scale in Figure 9.
The energy in the higher k modes does not depend on
the size of the loop but the energy in the lowest few
modes grows with the size of the loop. It is worth noting
that the spectrum gets cut o↵ at k ⇡ 0.1 ⇥ 2⇡ ⇡ 0.6
which corresponds to a momentum less than m� = 1.
Hence the massive particles emitted by the string are
non-relativistic especially for long loops.

a “fluffy” core

Look for bound states in core.
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Bound states excited by string intersections and

Goldstone boson back reaction (1/r^2 term).

implies bound state.
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Energy spectra
Massive and massless modes

N=50 (blue), 100, 150, 200, 250.
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FIG. 9: A log-log plot of the energy spectrum of massive radi-

ation after the loops in the simulation have collapsed for the

runs with initial loop size 50 (blue circles), 100 (red crosses),

150 (green triangles), 200 (orange squares), and 250 (black

pluses).
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FIG. 10: A log-log plot of the energy spectrum of Goldstone

radiation when the initial loop size is 50 (blue circles), 100

(red crosses), 150 (green triangles), 200 (orange squares), and

250 (black pluses). The overlaid black dashed line is given by

15/k and is a good fit out to k ⇡ 0.08⇥ 2⇡ ⇡ 0.5. The peak

at k ⇡ 0.5 corresponds to energy ⇡ m�/2.

The spectrum for Goldstone radiation is shown in the
log-log plot of Figure 10. We see that the spectrum de-
cays as 15/k until a cuto↵ wavenumber kc ⇡ 0.5, after
which there is essentially negligible energy contribution.
To obtain the continuum version of the energy spectrum
as given in (1), we divide both sides of (23) by �k = ⇡/L.
Then,

dE✓k

dk
=

L

⇡

15⌘2

k
⇡ 4.8

⌘2L

k
, (2L)�1

 k . m� (25)

One additional feature we see in the spectrum of Gold-
stone radiation is the peak at k ⇡ 0.08 ⇥ 2⇡ in Figure 10
for all the loops we have simulated. The location of the

peak, at k ⇡ 0.5 = m�/2, reveals the origin of this fea-
ture. It is caused by the massive particles that decay into
Goldstone bosons due to the interaction �(@µ✓)2. Since
a radiated � is non-relativistic, it would decay into two
Goldstone bosons, each with energy of about m�/2.

V. CONCLUSIONS

In this paper we have focused on cosmic global string
loops, their dynamics and decay. We numerically evolved
loops of global string with length up to 1000 times the
width of the string core. By extrapolating our results,
we can meaningfully discuss cosmologically relevant loops
whose size can be comparable to the cosmic horizon and
many orders of magnitude larger than the core thickness.

Our results show that global string loops decay very
quickly with lifetime ⇠ L by radiating Goldstone bosons
(✓) and massive particles (�). Most of the energy is
radiated in Goldstone bosons and the emission of � is
suppressed by 1/ ln(m�L), which in a cosmological set-
ting would be ⇠ 0.01 � 0.1. The emitted � particles are
non-relativistic and they eventually decay into Goldstone
bosons, producing a sharp peak in the Goldstone boson
energy spectrum at m�/2. In cosmology, the decay takes
place continually during the evolution of the global string
network and the sharp peak at m�/2 gets smeared out
due to cosmological redshifting of the energy. Even if the
global string network were to decay at a specific epoch, as
in the axion scenario, a sharp feature in the light particle
(axion) spectrum that is produced due to heavy particle
decay is not expected to survive. Such particles would
be relativistic and their energy density would dilute like
radiation instead of matter. The energy density of ul-
trarelativistic axions would be suppressed by the factor
zQCD ⇠ 1012 as compared to non-relativistic axions.

We have also extracted the energy spectrum for the
Goldstone boson radiation from global string loops in
our simulations. We obtain a 1/k spectrum, confirm-
ing that the results of Refs. [6, 10] hold even for loops
formed by processes expected in a cosmological setting.
The peak in our simulations, at k ⇡ m�/2, is a new
feature, though one that should have been expected in
hindsight. The suppressed strength of the peak (1-10%)
is due to the logarithmic divergence associated with the
Goldstone component of global strings.

To summarize, we have obtained a remarkably simple
picture for the decay of cosmic global string loops. Ini-
tially the loop consists of a massive field and a Goldstone
field. The loop quickly collapses, releasing radiation of
massive field and Goldstone bosons, with the Goldstone
radiation retaining its original 1/k spectrum. The ra-
diated total energies correspond to the initial energies
in these components, except that the massive particles
decay into Goldstone bosons. As the massive particles
are non-relativistic they produce a line signature in the
spectrum of Goldstone bosons at k ⇡ m�/2 on top of the
1/k continuum. We have tested the sensitivity of our re-

massive radiation
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radiation when the initial loop size is 50 (blue circles), 100

(red crosses), 150 (green triangles), 200 (orange squares), and

250 (black pluses). The overlaid black dashed line is given by

15/k and is a good fit out to k ⇡ 0.08⇥ 2⇡ ⇡ 0.5. The peak

at k ⇡ 0.5 corresponds to energy ⇡ m�/2.

The spectrum for Goldstone radiation is shown in the
log-log plot of Figure 10. We see that the spectrum de-
cays as 15/k until a cuto↵ wavenumber kc ⇡ 0.5, after
which there is essentially negligible energy contribution.
To obtain the continuum version of the energy spectrum
as given in (1), we divide both sides of (23) by �k = ⇡/L.
Then,

dE✓k

dk
=

L

⇡

15⌘2

k
⇡ 4.8
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k
, (2L)�1
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One additional feature we see in the spectrum of Gold-
stone radiation is the peak at k ⇡ 0.08 ⇥ 2⇡ in Figure 10
for all the loops we have simulated. The location of the

peak, at k ⇡ 0.5 = m�/2, reveals the origin of this fea-
ture. It is caused by the massive particles that decay into
Goldstone bosons due to the interaction �(@µ✓)2. Since
a radiated � is non-relativistic, it would decay into two
Goldstone bosons, each with energy of about m�/2.

V. CONCLUSIONS

In this paper we have focused on cosmic global string
loops, their dynamics and decay. We numerically evolved
loops of global string with length up to 1000 times the
width of the string core. By extrapolating our results,
we can meaningfully discuss cosmologically relevant loops
whose size can be comparable to the cosmic horizon and
many orders of magnitude larger than the core thickness.

Our results show that global string loops decay very
quickly with lifetime ⇠ L by radiating Goldstone bosons
(✓) and massive particles (�). Most of the energy is
radiated in Goldstone bosons and the emission of � is
suppressed by 1/ ln(m�L), which in a cosmological set-
ting would be ⇠ 0.01 � 0.1. The emitted � particles are
non-relativistic and they eventually decay into Goldstone
bosons, producing a sharp peak in the Goldstone boson
energy spectrum at m�/2. In cosmology, the decay takes
place continually during the evolution of the global string
network and the sharp peak at m�/2 gets smeared out
due to cosmological redshifting of the energy. Even if the
global string network were to decay at a specific epoch, as
in the axion scenario, a sharp feature in the light particle
(axion) spectrum that is produced due to heavy particle
decay is not expected to survive. Such particles would
be relativistic and their energy density would dilute like
radiation instead of matter. The energy density of ul-
trarelativistic axions would be suppressed by the factor
zQCD ⇠ 1012 as compared to non-relativistic axions.

We have also extracted the energy spectrum for the
Goldstone boson radiation from global string loops in
our simulations. We obtain a 1/k spectrum, confirm-
ing that the results of Refs. [6, 10] hold even for loops
formed by processes expected in a cosmological setting.
The peak in our simulations, at k ⇡ m�/2, is a new
feature, though one that should have been expected in
hindsight. The suppressed strength of the peak (1-10%)
is due to the logarithmic divergence associated with the
Goldstone component of global strings.

To summarize, we have obtained a remarkably simple
picture for the decay of cosmic global string loops. Ini-
tially the loop consists of a massive field and a Goldstone
field. The loop quickly collapses, releasing radiation of
massive field and Goldstone bosons, with the Goldstone
radiation retaining its original 1/k spectrum. The ra-
diated total energies correspond to the initial energies
in these components, except that the massive particles
decay into Goldstone bosons. As the massive particles
are non-relativistic they produce a line signature in the
spectrum of Goldstone bosons at k ⇡ m�/2 on top of the
1/k continuum. We have tested the sensitivity of our re-
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Goldstone radiation
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Summary
Global string loop results and caveats

• Global string loops decay within ~1 oscillation period.

• Radiate massive and massless radiation according to initial energies.

• Massive particles are non-relativistic and eventually decay to massless radiation.

• Spectrum of massless radiation is 1/k.

We have simulated (cosmological) global string loops with length up to 1000 times

the core width.

• Caveat: Need to extrapolate by many orders of magnitude. Can’t detect 
logarithmic effects. (Code is available on request.)

Consistent with Hagmann & Sikivie



Evolution
Gauge strings
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f(r) ⇠ “ tanh(r/w)”

Energy density falls off as exp(-mr) because all 

fields are massive.

String core

(No Goldstone cloud)
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Cosmic Strings: Formation



Cosmic String Network

Albrecht & Turok; Bennet & Bouchet; Allen & Shellard, 1989

Note the 
infinite strings



Evolution
Gravitational waves or massive radiation?
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Z
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p
�g2Nambu-Goto action:

Loops decay by gravitational radiation. TV & A. Vilenkin, 1985; …

Loops decay by particle radiation. M. Hindmarsh et al, 2009; …

Full field theory simulations:

Crucial to resolve for experiments (LIGO, NanoGrav,…) looking for gravitational 
wave signatures. 



Evolution
Simulation equations

Technical note: Use Numerical Relativity technique for numerical stability.
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(Code is available on request.)



Evolution
Initial conditions 2

+v1

-v1

+v2-v2

FIG. 1: Schematic representation of the initial configuration.
Four straight strings are set up with velocities as shown. The
strings intersect and reconnect to produce a central loop and
also a second “outer” loop because of periodic boundary con-
ditions. These loops then oscillate and shrink without inter-
acting with each other. By choosing the spacing of the initial
strings, we can produce loops of di↵erent sizes.

such that F (1) = 1. We will only consider � = 1 corre-
sponding to the Bogomol’nyi-Prasad-Sommerfield (BPS)
limit [21, 22]) where µ = ⇡⌘2 and the scalar mass,
mS =

p
2�⌘, equals the vector mass, mV = e⌘.

Our aim is to produce a loop as might be produced
in a cosmological setting and then to evolve it. For this
purpose, we set up initial conditions with four straight
strings that are moving with velocities ±v1 and ±v2 as
shown schematically in Fig. 1. The four strings then
collide to form a loop with a stationary center of mass and
a non-zero angular momentum. The latter is essential to
prevent the loop from simply collapsing to a double line.
Preparing this initial configuration starts with taking the
string solution of Eq. (4) oriented along a given direction,
boosting it to a suitable velocity, and gauge transforming
the boosted solution back in to the temporal gauge. Then
the four string solutions have to be patched together in a
simulation box with periodic boundaries. Further details
are provided in the Supplemental Material section.

Cosmological strings are expected to be mildly rela-
tivistic and we choose |v1| = 0.6 and |v2| = 0.33. The di-
rections are taken to be (v̂1)x = 0.4, (v̂1)y =

p
1� 0.42 ⇡

0.92 for the two strings oriented along the z-axis and
(v̂2)z = 0.4, (v̂2)y ⇡ 0.92 for those along the x-axis. The
string velocities are approximately aligned along the y-
axis, but not exactly, to avoid overly symmetrical loops
that tend to pass through a double line configuration and
collapse prematurely. We have experimented with a wide
range of initial velocities and our main conclusions are in-
dependent of the particular choices of these parameters.

Given the initial conditions for fields �, Aµ, we evolved
them using the discretized version of Eqs. (1)-(3) with
e = 1, � = 1/2, ⌘ = 1 and g2p = 0.75. We used the
explicit Crank-Nicholson algorithm with two iterations
for the evolution [23] and periodic boundary conditions.
We tried di↵erent lattice spacings to study the e↵ects of

FIG. 2: Energy of a loop with the initial size of 390 lattice
spacings plotted vs time. Overlaid on the plot are snapshots of
the loop as it goes through phases of rapid radiation discharge
due to smoothening of kinks. The animation showing the
evolution of this loop can be found at [24].

numerical resolution. The initial string spacing was set to
a fixed fraction of the simulation box size so that smaller
loops ran in a smaller box, with less computational cost.
Because of periodic boundary conditions, the recon-

nection of four strings produces two loops – the central
loop in the middle of the box shown in Fig. 1, and an
“outer” loop formed from the “fragments” in the corners
of the box. The two loops then oscillate and decay with-
out intersecting each other. We track the loop energy by
summing the energy density in the “core” of the string.
The energy density is given by

E =
1

2
|D0�|2+

1

2
|Di�|2+

1

2
(E2+B2)+

�

4
(|�|2�⌘2)2 (5)

where E andB are the electric and magnetic field vectors,
with their components defined as Ei = F0i and Bi =
� 1

2✏ijkFjk. We define the string core to be the cells where
the magnitude of the scalar field, |�|, is less than 0.9⌘.
In Fig. 2 we plot the loop energy vs time for a simula-

tion on a 6003 lattice with �x = 0.25, where the initial
size of the loop is 390 lattice spacings. (The animation
of the loop evolution can be found at [24].) The plot
suggests episodic radiation, with the overlaid snapshots
showing the representative “events” leading to drops in
the loop energy. Straight strings do not radiate as they
correspond to a boosted string solution. The kinks on
the loop, formed at the intercommutation of the straight
strings, also propagate with minimal energy loss. We
find that noticeable radiation is produced when kinks
collide. Also, as the kinks smooth out, there are episodes
of large radiation which may be due to the formation of
weak cusps. Particle radiation from cusps was studied
in Ref. [15] where it was found that the energy emis-
sion from a cusp leads to the formation of kinks and to
weak cusps in subsequent loop oscillations. This pattern
of episodic radiation from kink collisions and weak cusps,

Technical notes  

Boost takes the gauge field out of temporal gauge.  
Then one needs to perform a gauge transformation  
to go back to temporal gauge. 

Periodic boundary conditions require some 
smoothing functions.
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FIG. 1: Schematic representation of the initial configuration.
Four straight strings are set up with velocities as shown. The
strings intersect and reconnect to produce a central loop and
also a second “outer” loop because of periodic boundary con-
ditions. These loops then oscillate and shrink without inter-
acting with each other. By choosing the spacing of the initial
strings, we can produce loops of di↵erent sizes.

such that F (1) = 1. We will only consider � = 1 corre-
sponding to the Bogomol’nyi-Prasad-Sommerfield (BPS)
limit [21, 22]) where µ = ⇡⌘2 and the scalar mass,
mS =

p
2�⌘, equals the vector mass, mV = e⌘.

Our aim is to produce a loop as might be produced
in a cosmological setting and then to evolve it. For this
purpose, we set up initial conditions with four straight
strings that are moving with velocities ±v1 and ±v2 as
shown schematically in Fig. 1. The four strings then
collide to form a loop with a stationary center of mass and
a non-zero angular momentum. The latter is essential to
prevent the loop from simply collapsing to a double line.
Preparing this initial configuration starts with taking the
string solution of Eq. (4) oriented along a given direction,
boosting it to a suitable velocity, and gauge transforming
the boosted solution back in to the temporal gauge. Then
the four string solutions have to be patched together in a
simulation box with periodic boundaries. Further details
are provided in the Supplemental Material section.

Cosmological strings are expected to be mildly rela-
tivistic and we choose |v1| = 0.6 and |v2| = 0.33. The di-
rections are taken to be (v̂1)x = 0.4, (v̂1)y =

p
1� 0.42 ⇡

0.92 for the two strings oriented along the z-axis and
(v̂2)z = 0.4, (v̂2)y ⇡ 0.92 for those along the x-axis. The
string velocities are approximately aligned along the y-
axis, but not exactly, to avoid overly symmetrical loops
that tend to pass through a double line configuration and
collapse prematurely. We have experimented with a wide
range of initial velocities and our main conclusions are in-
dependent of the particular choices of these parameters.

Given the initial conditions for fields �, Aµ, we evolved
them using the discretized version of Eqs. (1)-(3) with
e = 1, � = 1/2, ⌘ = 1 and g2p = 0.75. We used the
explicit Crank-Nicholson algorithm with two iterations
for the evolution [23] and periodic boundary conditions.
We tried di↵erent lattice spacings to study the e↵ects of
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FIG. 2: Energy of a loop with the initial size of 390 lattice
spacings plotted vs time. Overlaid on the plot are snapshots of
the loop as it goes through phases of rapid radiation discharge
due to smoothening of kinks. The animation showing the
evolution of this loop can be found at [24].

numerical resolution. The initial string spacing was set to
a fixed fraction of the simulation box size so that smaller
loops ran in a smaller box, with less computational cost.
Because of periodic boundary conditions, the recon-

nection of four strings produces two loops – the central
loop in the middle of the box shown in Fig. 1, and an
“outer” loop formed from the “fragments” in the corners
of the box. The two loops then oscillate and decay with-
out intersecting each other. We track the loop energy by
summing the energy density in the “core” of the string.
The energy density is given by

E =
1

2
|D0�|2+

1

2
|Di�|2+

1

2
(E2+B2)+

�

4
(|�|2�⌘2)2 (5)

where E andB are the electric and magnetic field vectors,
with their components defined as Ei = F0i and Bi =
� 1

2✏ijkFjk. We define the string core to be the cells where
the magnitude of the scalar field, |�|, is less than 0.9⌘.
In Fig. 2 we plot the loop energy vs time for a simula-

tion on a 6003 lattice with �x = 0.25, where the initial
size of the loop is 390 lattice spacings. (The animation
of the loop evolution can be found at [24].) The plot
suggests episodic radiation, with the overlaid snapshots
showing the representative “events” leading to drops in
the loop energy. Straight strings do not radiate as they
correspond to a boosted string solution. The kinks on
the loop, formed at the intercommutation of the straight
strings, also propagate with minimal energy loss. We
find that noticeable radiation is produced when kinks
collide. Also, as the kinks smooth out, there are episodes
of large radiation which may be due to the formation of
weak cusps. Particle radiation from cusps was studied
in Ref. [15] where it was found that the energy emis-
sion from a cusp leads to the formation of kinks and to
weak cusps in subsequent loop oscillations. This pattern
of episodic radiation from kink collisions and weak cusps,

“Steps” are kink collisions/cusps.

3

Lattice size Inner loop Outer loop

4003 140 260

6003 210 390

8003 280 520

12003 420 780

TABLE I: Loop sizes in lattice units for each of the runs.
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FIG. 3: Loop energy vs. time for 8 di↵erent loops in 4 sepa-
rate runs at �x = 0.25 resolution.

with relatively minor energy loss in between these events,
is common to all loop simulations we have performed.

To obtain a quantitative measure of the scaling of the
loop half-life with its size, we have runs simulations for 4
di↵erent box sizes yielding 8 loops given in Table I. (Two
loops from di↵erent runs are almost the same length and
provide a check on our simulation.) Fig. 3 shows the loop
energy versus time for the 8 loops. As the loops evolve,
they also shed their angular momentum, defined as

Li ⌘ ✏ijk

Z

string core
d3xxj [�

1

2
((D0�)(Dk�)

⇤ + (D0�)
⇤(Dk�))

+ ✏klmElBm]. (6)
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FIG. 4: Loop angular momentum vs. time for 8 di↵erent
loops in 4 separate runs at �x = 0.25 resolution.

In Fig. 4 we plot |L| vs time and also see episodic decay.
We have run our simulations for a few di↵erent values

of the lattice spacing, �x, and found that the results
are sensitive to the resolution. For example, as shown
in Fig. 5, the total energy in the simulation box over
the entire run is conserved only at ⇠ 33% level when
�x = 0.50. For ⌘ = 1, e = 1, � = 1/2, the string width
is ⇠ 1. Therefore, with �x = 0.5 we only have a few
lattice points within the width of the string. Using �x =
0.25 improves the conservation to ⇠ 5% level and agrees
well with the much more computationally expensive run
with �x = 0.125. The choice of �x makes an important
di↵erence in the lifetime of the loop, as is clear from the
right panel of Fig. 5. Loops live longer in simulations with
better resolution. From the animations, we see that the
shorter loops live for about one oscillation period while
the larger loops survive for several oscillation periods.
(There is ambiguity in defining an oscillation period since
the length of the loop and hence its oscillation period is
changing relatively rapidly during the simulation.)
The longest loop we are able to simulate has energy

⇠ 3⇥ 103, which corresponds to length L ⇠ 103w where
w is the width of the string. In cosmology we are inter-
ested in loops of length comparable to the cosmic horizon,
which is orders of magnitude larger than the thickness of
the string, perhaps by a factor ⇠ 1060. So we need to ex-
trapolate our results to larger lengths. For this purpose
we calculate the half-life, ⌧ , i.e. the time it takes the
loop to lose half its initial energy. In Fig. 6 we plot ⌧/⌧0,
where ⌧0 = 41.5/⌘ is the half-life of the smallest loop in
our simulations, versus the initial energy normalized by
that of the smallest loop (denoted E0 = 506⌘). We find
a power law fit,

⌧ = ⌧0

Å
E

E0

ãp
=

1.6⇥ 10�3

⌘
(⌘L)p, p ⇡ 2 (7)

where we have reinserted dimensional factors of ⌘.
The L2 scaling in (7) can be understood as following

from radiation being due to episodes involving a fixed
number of features (kinks and weak cusps) on the loop,
with the power emitted in a given episode (a kink collision
or a weak cusp) being independent of L. (Note that the
size of the steps seen in Fig. 3 is similar for di↵erent
loops). If ⌫ denotes the number of episodes per period
and each episode radiates energy ✏ on average, the energy
lost per unit time is

Ė ⇠ �⌫✏

L
⇠ �µ⌫✏

E
. (8)

Integration of this equation gives a lifetime

⌧ ⇠ E2

µ⌫✏
⇠ µL2

⌫✏
(9)

in agreement with the L2 scaling in (7).
The particle radiation rate (8) is to be contrasted with

Ė ⇠ ⌫Gµ2 expected due to gravitational wave radiation
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FIG. 5: Comparison of runs with di↵erent lattice resolution �x = 0.125, 0.25, 0.5 on lattices of size 1600, 800 and 400,
respectively, corresponding to a fixed physical lattice length of 100. The left panel shows the total energy in our simulation
box and the right panel shows the evolution of the energy in the two loops in the box. The plots show convergence at higher
resolution and that �x = 0.25 o↵ers a good compromise between accuracy and speed.
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FIG. 6: Plot of the loop half-life versus initial energy (propor-
tional to the initial length) in the loop. They are normalized
by the initial half-life of the smallest loop, ⌧0, and and its
energy, E0. The straight line fit shows that ⌧ / L2 where L
is the initial length of the loop.

from ⌫ radiation episodes involving kinks and cusps [25–
27]. Note that the rate of energy loss to gravitational
radiation is not suppressed by a factor of L as is the
case for particle radiation in (8). This is because, for
example, a cusp on a loop that is twice as large is also
twice as large, and the gravitational energy emitted by a
single cusp is proportional to L. Then the lifetime of the
loop due to gravitational radiation is

⌧g ⇠ L

⌫Gµ
. (10)

Comparing this to (9) allows us to derive a criterion for
when the gravitational radiation is more important than
particle radiation, namely, when

⌧g < ⌧ ) L & ✏

Gµ2
⇠ w

Gµ
(11)

where w is the string thickness and we estimate ✏ ⇠ p
µ,

i.e. the particle energy emitted in an episode is compara-
ble to the energy scale of the string, and lP ⇠ 10�33 cm is
the Planck length. Note that ⌫ has canceled out in (11).
Therefore, even if there are more episodes on larger loops,
gravitational radiation still dominates over particle radi-
ation if (11) is satisfied.

With L ⇠ 1027 cm we find that gravitational radiation
is less important than particle radiation if Gµ . 10�40,
corresponding to ⌘ ⇠ 100 MeV or the QCD scale. Hence
particle radiation could be the main decay mechanism for
strings formed below the QCD scale but the dynamics
of strings formed at such low energies is expected to be
dominated by friction with the ambient medium [1].

Alternately, for strings close to the current bound on
the string tension, Gµ ⇡ 10�11, Eq. (11) implies that
particle radiation will only be important for loops that
are very small, L < 10�17 cm. Most of the radiation from
such a network of strings will be in gravitational waves.

We would like to point out some caveats to the above
discussion. The first caveat is that the long strings in
our initial conditions are straight and smooth. If these
strings started out with structure (perhaps as shallow
kinks) on them, as has been suggested in Ref. [18], the
number of radiative episodes would be larger, and both
the particle and gravitational radiation would be larger.
This would not change the relative importance of particle
and gravitational radiation but it would mean that the
loop decays faster. A second caveat is that our loops only
contain kinks and no cusps. It is known from Ref. [15]
that the particle radiation loss from a cusp is proportional
to

p
L and this does not agree with our model where

each episode emits radiation that is independent of L.
However, once the cusp radiates, it forms two kinks that
then propagate, radiate and smooth out to some extent.
In the next oscillation, the cusp is weaker and the energy
radiated will not be proportional to

p
L, instead it will
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⌧grav < ⌧particle for large L

where w=width of the string, "=tension.
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Lcrit ⇠
w

Gµ

Strings with tension above the QCD scale 
primarily decay by gravitational radiation.

High frequency cutoff on gravitational wave spectrum due to particle radiation.
P. Auclair, D. Steer & TV, 2020
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FIG. 3: SBGW including the backreaction of particle emission on the loop distribution. LH panel: kinks on loops, RH panel:
cusps on loop. The spectra are cuto↵ at high frequency, as indicated by the black vertical lines. Gµ ranges from 10�17 (lower
curve), through 10�15, 10�13,10�11, 10�9 and 10�7 (upper curve). Also plotted are the power-law integrated sensitivity curves
from SKA (pink dashed) [44], LISA (yellow dashed) [45], adv-LIGO (grey dashed) [46] and Einstein Telescope (blue dashed)
[47, 48].

We can estimate the frequency above which the spectrum decays as follows. In the radiation era

H(z) = (1 + z)2
p

⌦RH0 (45)

t(z) =
1

2(1 + z)2
1p

⌦RH0
(46)

At high frequency, the lowest harmonic j = 1 is expected to dominate [1], so we set Pj = ��j,1. Then using (45) and
(46), Eq. (42) simplifies to

⌦gw(ln f) = 24 16⇡(�Gµ)2
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Here, in going from the second to the third equality, we have used the fact that (i) for Gµ >⇠ 10�18, which is relevant
range for current and future GW detectors, zeq < (zc, zk) ⌧ zfriction (see Eqs. (38), (41) and (44)), and (ii) that the
loop distribution above z(c,k) is subdominant, see e.g. discussion above equation (37) in section III B. Using Eq.(46)
as well as the approximation for the loop distribution for z < zk given in Eq. (36), it follows that for kinks
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where we have changed variable from z to

x =
4

f
(1 + z)H0

p
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so that
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Conclusion
Formation & Evolution

• Formation: Universal results for the number density of topological 
defects formed in a quantum phase transition.


• Global string loop evolution: Loops decay in about 1 oscillation period, 
emit massive and massless Goldstone boson radiation. String core 
appears fluffy, probably due to excitation of bound states on core. 
Goldstone boson spectrum goes as 1/k and with bump at m$/2.


• Gauge string loop evolution: Loops larger than a critical length w/G%, 
decay primarily to gravitational radiation.


