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GoAL & MOTIVATION

* Infrared divergences: important quantities

* Consider: QCD corrections to photon-quark vertex
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* Vertex function: characterised by two scalar form factors Fi, F»

F“(QI1,Q2) = Qq {F1(q2)7“ — ﬁ&((f)gw%}

* Consider: Form factors of massive quarks

* Important quantities: F; is building block for variety of observables

e.g. Xsection of hadron production in € €' annihilation & derived quantities like forward-
backward asymmetry

* Also consider: the massless scenario * Fi



GoAL & MOTIVATION

« State-of-the-art results

m # O F]_) FQ at 3_100p . . . [I—!enn, Smirnov, Smirnov, Steinhauser ’16]
1 in large V. limit in SU(N,)
T —= 0 F]_ at 4 Oop [Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]

[Manteuffel, Schabinger ’16]
- Next steps: compute the full results for general V.

~~ underway by several groups

» We address: What can we say about next order?

~ indeed, IR poles can be predicted (partially) by
exploiting RG evolution of FF
m # 0 ~~ F} at 4-loop in large N, and high energy limit upto 1/€”
m =0 ~> I at 5-loop in large N, and high energy limit upto 1/¢”

+ We also obtain process independent functions relating massive &
massless amplitudes in high-energy limit at 3 & 4-loops RESULTS

Exploit RG evolution of FF



PLAN OF THE TALK

> RG evolution: massive
» Cute technique to solve

> RG evolution: massless

> Process independent functions

> Conclusions



RG EQUATION: MASSIVE

[Sudakov ’56; Mueller ’79; Collins ’80; Sen ’81]
* FF satisfies KG eqn in dimensional reg.

[Magnea, Sterman ’90]
[Gluza, Mitov, Moch, Riemann ’07, 09]

d ~ 2 .02 17 - 2 2 -~ 2,2
_ mE(a, S ™ =tk s BB ) + G &S,Q2,“R,e
dIn p1? pe o p? 2 np o p Py W2

H QCD factorisation, gauge & RG invariance

* The form factor

Q*> = —¢* = —(p1 + p2)*

cmelnF J— 4 — 9
\ 45 = G, /4m
Matching coefficient L : scale to keep as dimensionless

R : renormalisation scale

e (5oal: Solve the RG

» Strategy: Use bare coupling a5 instead of renormalised one @

[Ravindran 06: For Massless]
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SOLVING RG EQUATION: MASSIVE

RG invariance of FF wrt UR

d - m? us ) d - ( Q2 12
K | as, 9 Rae — = G s, ; R7€> = —A (as -
dln /12, ( R dTn 22, R (as (1R))

Cusp anomalous dimension
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Boundary terms
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SOLVING RG EQUATION: MASSIVE

Initial goal: Solve for In Fin powers of bare @

* Need all quantities in powers of G

- Be{K G, A}
as )\2 EZCL? )\2 Ae{m,Q,ur}t
k=1

Renormalisation constant

Expand

Use

functions of ;. ¢

Expansion of B3 in powers of



SOLVING RG EQUATION: MASSIVE

Soln of /3 in powers of ag

50 00) =Yk (2)

BAl:Bl)

By =By + B2V

with B, — Bg+2[>’gZ 1(1)+B1 —1(2)

By =By +3B52, +52{ ( ~1, <1>) + QZACL—SL(Q)} LB 2N
and so on...

The integral becomes a polynomial integral ~~ trivial




UN-RENORMALISED SOLUTION: MASSIVE

Solution of KG in powers of bare a4

2 2
lnF(&S,Q2,m2,e> _
w2

Renormalised Solution

To obtain the renormalised solution in powers of general a.(u7;)
~~ use d-dimensional evolution of a,(u%)

d
din 2" (W) = —eas (i) Z Bras™* (4r)  Solved iteratively
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RENORMALISED SOLUTION: MASSIVE

Renormalised Solution | )
In /" = Z ag (117) L
k=1

2

For ,u% = m” at one loop

51—1{;<G1+K1A1L>}+§<G1A;L> G{L: <G1A;L>}
+ ¢ f; (Gl— Af)}—é{g <G1—AQL>}+64{2L450 (Gl—AéL>}+(’)(e5)
At two loop
) | | e )
_ 504L2 <G1 B A;L> _6{/:22 <G2_ A§L> B 504La <G1 ) Af)}
e ) e ) e

BoL? AL
- (Gl— ; >}+0(€4) and so on...

0 L = log(Q*/m?)
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NEwW RESULTS: MASSIVE

» Conformal theory 5; = 0: all order result

~ > L AL
‘Ck p— ZZ(—GIC)Z 12_“<Gk+5OlKk — l—|—]_>
=0

 Form Factor

F=C (as (m2) ,e) e ~=3p consistent with literature up to 3-loop

[Gluza, Mitov, Moch, Riemann 07, *09]

 State-of-the-art results
F1, F2 at 3_100p 1n large NC [Henn, Smirnov, Smirnov, Steinhauser *16]

- New results in 1704.07846
Fy at 4-loop in large V., and high energy limit

G oo
upto —

€2

F5 is suppressed by m~/qg* in high energy limit
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DETERMINING UNKNOWN CONSTANTS: MASSIVE

Determining unknown constants G, K, C in large N limit

l Comparing with explicit computations

* Gl tO 0(62) y GQ t() 0(6) [Gluza, Mitov, Moch, Riemann ’07

%newl H F1 at 3- [OOp

[Henn, Smirnov, Smirnov, Steinhauser

* Kl, KQ [Gluza, Mitov, Moch, Riemann
\[(3/— new!
* Ol tO 0(62) , 02 tO O(E) [Gluza, Mitov, Moch, Riemann

Cl to 0(64) , 0 0(62) J Cg to O(EO) - hew!

s explicit computation

* A4 became available recently [Henn, Smirnov, Smirnov, Steinhauser ’

[Henn, Smirnov, Smirnov, Steinhauser, Lee ’

12

'09]

’16]
"09]

’09]



COMMENTS: MASSIVE

» Excludes singlet contributions

b

» Excludes closed heavy-quark loops

\
Obey similar

- exponentiation

M/

[KUhn, Moch, Penin, Smirnov *01]
[Feucht, KUhn, Moch ’03]

~~> Sub-leading in large [V, limit

~~~> Hence, we have not considerer these
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MASSLESS SCENARIO




RG EQUATION: MASSLESS

* FF satisfies KG eqn

d lnF(&S,Qz mé )

"~ dln 2 /ﬂ’/ﬂ’e

3 2 2 3 2 9
[K(”/“R)w(Q“R)]
Jik ua’

[Sudakov ’56; Mueller ’79; Collins ’80; Sen ’81]

Solved exactly the similar way [Ravindran "06]
00 | —ke
_ X Q2 2 7 Q2 ~Q
1IlF<S, ILLQ,/Z/Q,E :ZCLS F Ek(€)+
k=1 L
Up to 4—1()()p; present [Moch, Vermaseren, Vogt *05]

[Ravindran ’06]

-loop solution

5\4/ new!
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RG EQUATION: MASSLESS

» Conformal theory 8; = 0: all order result

e - [Bern, Dixon, Smirnov ’05]

° FF [TA, Banerjee, Dhani, Rana, Ravindran, Seth ’17]

./
N Matching coefhcient = 1

« State-of-the-art results

F at 4_100p 1n large NC [Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]

* New results in 1704.07846
F" at 5-loop in large V. and high energy limit

G o ]
up )

€
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DETERMINING UNKNOWN CONSTANTS: MASSLESS

Determining unknown constants in large [V, limit

l Comparing with explicit computations

* G1to O(°) » G2 to O(e*) » G3 to O(€?)

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser *09]

[Gehrmann, Glover, Huber, Ikizlerli, Studerus ’10]

0
M new! H I at 4-loop

[Henn, Smirnov, Smirnov, Steinhauser, Lee ’16]

% K, = K;(Ax, Bx) do not appear in the final expressions
~~ get cancelled against similar terms arising from G



COMMENTS: MASSIVE & MASSLESS

% (G are same for massive and massless [Mitov, Moch 071

3 expected! Governed by universal cusp AD

Manifestly clear in our methodology

2

MR
(02 2 dp2
G (0 % 12 ) = G (0, (@) )+ [ A (o (1)
Hr H o MR

#  For massive K; enter only into the poles of L

~~» Constants and (’)(ek) terms can be determined from

massless calculation

~~ could lead to deeper understanding of the connection
between massive & massless FI¥



PROCESS INDEPENDENT FUNCTION

» QCD factorisation: massive amplitudes shares essential properties with
the corresponding massless ones in the high-energy limit

1/2
M= T] 7(m|0) m* MO -
[z] qu [Moch, Mitov ’07]

11 legs}

assive - Massless

Universal and depends only on the external partons!

» Can be computed using simplest amplitudes: FF

Smlo) _ F(Q7,m?, %)
a F(Q?, pu?)

% @° independence is manifestly clear: governed by G, same for
massive & massless FF

* O(e”) at 3-loop, upto O(1/¢%) at 4-loop ~» new!

% Relates dimensionally regularised amplitudes to those where the
IR divergence is regularised with a small quark mass. 9



CONCLUSIONS

% RG equations governing massive & massless quark-photon FF are
discussed.

% Elegant derivation for analytic solution is proposed

—y key idea: use bare coupling

% ()° dependence is governed by G & cusp AD: same for

massive & massless

% Massive: non-trivial matching coefhicient C

1

% Massive: Fy at 4-loop in large N, and high energy limit to —

€
1
Massless: F’at 5-loop in large N and high energy limit to —
€

THANK YOU!
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